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Abstract 
 

In the field of modern recommender systems, accurately predicting user similarities remains a 

critical challenge. This paper proposes an innovative approach that combines bipartite graphs 

with the SimRank structural similarity measure to enhance the prediction of similar user 

profiles. By representing users and their interests in a bipartite graph and applying SimRank, 

our method captures both direct and indirect relationships between users. Experimental results 

obtained with the MovieLens dataset show that this approach outperforms traditional methods 

such as cosine similarity, offering more accurate and consistent predictions. The integration of 

SimRank with a bipartite structure provides a robust framework for identifying subtle and 

complex similarities between users. This study highlights the effectiveness of the proposed 

method and paves the way for future research, including the incorporation of contextual data 

and advanced techniques such as Graph Neural Networks to further refine recommender 

systems. 

1. Introduction 
 

In the era of big data, the ability to efficiently and accurately predict user preferences has 

become a cornerstone of many modern applications, ranging from personalized 

recommendations to targeted marketing strategies. Among the various methodologies 

developed to address this challenge, graph-based approaches have proven to be a powerful tool 

for modeling and analyzing the complex relationships between entities. Graph theory, with its 

rich theoretical foundation and practical versatility, provides a robust framework for capturing 

the intricacies of interactions that define user behavior. 

Recent advances in graph-based machine learning, particularly those leveraging deep learning 

techniques, have significantly enhanced our ability to predict similar user profiles. These 

methodologies transcend traditional collaborative filtering and content-based recommendation 

techniques by exploiting the topological structure of user-item interactions, uncovering latent 

patterns and connections that were previously inaccessible. The advent of Graph Neural 

Networks (GNNs) has further propelled this field, enabling the incorporation of both local and 

global graph structures into the learning process. 

In this context, predicting similar user profiles based on graphs is not merely a theoretical 

pursuit but a practical necessity in an increasingly interconnected digital landscape. By 

representing users and their interactions as nodes and edges within a graph, these models can 

harness the power of network effects to provide more accurate and personalized predictions. 

This approach also aligns with the growing trend toward explainable AI, as graph-based models 

inherently offer a more interpretable structure compared to black-box algorithms. 

This article aims to explore cutting-edge techniques in graph-based user profile prediction, 

focusing on recent innovations and their practical applications. We will examine the 

fundamental principles of graph theory applied to user profiling, review the latest developments 



in GNNs and their variants, and discuss the implications of these advances for real-world 

applications. By providing a comprehensive overview of this rapidly evolving field, we hope 

to highlight the potential and challenges of using graph-based methods to predict similar user 

profiles, thereby contributing to the advancement of personalized user experiences in the digital 

age. 

This paper explores advanced techniques for predicting user profiles based on graphs, with a 

focus on recent innovations and their practical applications. We will begin by presenting various 

techniques for predicting similar user profiles based on graphs, detailing their advantages and 

disadvantages. Then, we will introduce our novel approach to detecting similar user profiles, 

based on representing user profiles as a bipartite graph and the SimRank structural similarity 

measure. Subsequently, we will conduct experiments to evaluate the effectiveness of our 

method. Finally, we will conclude with our findings and future research perspectives. 

2. State of the Art 
 

Graph-Based Techniques for Predicting Similar User Profiles 

 

2.1  Graph-Based Collaborative Filtering 

 

Graph-based collaborative filtering represents user-item interactions using nodes for users and 

items, and edges for interactions such as ratings. Simple to implement, this method directly 

leverages observed interactions. When it comes to detecting similar profiles, this approach 

explicitly models the relationships between users and items, thereby facilitating the 

identification of users with similar preferences.  

 

However, it can suffer from scalability issues and lacks consideration of contextual information. 

Yang et al. (2019) show that integrating user and item attributes enhances recommendation 

accuracy by enriching the graphs with additional information about users and items. Moreover, 

[1, 2] demonstrate that the inclusion of deep learning techniques and entity representations 

further improves performance. For instance, [3] used a graph-based collaborative filtering 

approach to detect similar profiles by integrating graph embeddings to enhance 

recommendation accuracy. 

 

2.2  Graph Neural Networks (GNNs) 
 

Graph Neural Networks (GNNs) are neural network architectures specifically designed for 

graph data. They aggregate information from neighboring nodes to learn representations that 

capture both the local and global structure of the graph. When it comes to user profiles, each 

node can represent a user along with their characteristics and interactions with other users. By 

generating node embeddings, GNNs capture the features and relationships of user profiles, thus 

facilitating the detection of similar users. They offer advantages in modeling complex 

dependencies and integrating various features, but they require significant computational power 

and large datasets for effective training. [4] demonstrated that GNNs outperform collaborative 

filtering methods in terms of accuracy, although they are more computationally expensive. [1] 

identified scalability challenges, while [5] discussed limitations related to information 

propagation in large graphs. 

 

2.3 Graph-Based Entity Representations 



Graph-based entity representations, such as Node2Vec and GraphSAGE, produce vector 

embeddings of graph nodes, facilitating similarity comparison between users by analyzing their 

embeddings. These techniques offer the advantage of generating continuous node 

representations that can be easily integrated into various machine learning models. When it 

comes to detecting similar profiles, each node represents a user, and the embeddings capture 

the characteristics and interactions of users, effectively enabling the identification of similar 

profiles. 

For example, [6] demonstrated that using Node2Vec for learning user representations in social 

networks significantly improves the accuracy of similar profile detection. Similarly, [7] showed 

that GraphSAGE can be used to predict links between users, thereby identifying similar profiles 

based on their interactions. However, these techniques may lose essential structural information 

and require preprocessing of the graphs. 

According to [8], Node2Vec outperforms other embedding methods in terms of node 

representation quality, which enhances recommendation performance. Additional studies, such 

as those by [9], also confirm the effectiveness of graph-based approaches for learning 

embeddings. 

2.3  Graph Clustering Algorithms 

 

Graph clustering algorithms, such as Louvain and K-Means, detect groups or communities of 

similar users by analyzing their connections within the graph. These techniques enable the 

identification of user communities and are scalable for large graphs. When it comes to detecting 

similar profiles, these algorithms can group users with similar behaviors or preferences, thereby 

facilitating targeted analysis and recommendations. 

 

However, they may not capture subtle similarities between users and are sensitive to 

initialization parameters as well as clustering method choices. According to [10],  the Louvain 

algorithm is particularly effective for large-scale community detection, producing high-quality 

partitions in real-world graphs. [11] complement this analysis by exploring the challenges of 

community detection in dynamic graphs. 

 

Further studies, such as those by [12], show that integrating graph embeddings into clustering 

algorithms improves the accuracy of similar profile detection. For example, [13] used 

DeepWalk to generate node embeddings, thus enhancing clustering performance for user 

community identification. 

 

2.4  Label Propagation 
 

Label Propagation is a method where known node labels are propagated through the graph to 

predict the labels of unknown nodes, leveraging the graph structure. When it comes to detecting 

similar profiles, this method can assign similar labels to users with similar connections or 

behaviors, thus facilitating the identification of groups of similar profiles. This technique is 

appreciated for its simplicity and speed of execution on medium-sized graphs. However, it can 

be sensitive to noise and errors in the data and may struggle with very dense or sparse graphs. 

[14] showed that Label Propagation is effective for classifying social graphs, though 

improvements are needed for large-scale graphs. More recently, [3] integrated Label 



Propagation with deep learning techniques to enhance the accuracy of similar profile detection. 

[12] proposed improvements to the Label Propagation algorithm for handling large-scale graphs 

with promising results. [3] also demonstrated the effectiveness of Label Propagation in 

recommendation applications, showing better performance in detecting similar user 

communities. 

 

2.5  Community Detection 
 

Community detection in graphs involves identifying dense subgraphs where nodes are more 

connected to each other than to the rest of the graph. This method allows for a natural 

segmentation of users, facilitating targeted analyses such as product recommendations or the 

detection of similar behaviors. By considering user profiles as nodes in the graph, community 

detection helps group users with similar interests or behaviors into distinct communities. 

However, applying this method can be challenging in sparsely connected graphs, and 

community detection algorithms can be computationally expensive. 

 

According to [15], community detection algorithms, such as those based on modularity and 

spectral partitioning techniques, offer significant improvements in terms of accuracy and 

efficiency, even for large-scale graphs. For example, [16] developed community detection 

methods that integrate deep learning techniques to enhance accuracy and scalability. 

Additionally, [17] proposed graph embedding-based approaches for more effective community 

detection, even in dynamic and evolving graphs, thereby enabling better identification of similar 

user profiles. 

3.  Our Approach 
 

As mentioned earlier, in the domain of predicting similar user profiles, various paradigms have 

been explored, including graph-based collaborative filtering, Graph Neural Networks (GNNs), 

graph-based entity representations, clustering algorithms, label propagation, and community 

detection. However, each of these approaches has specific limitations that can impact the 

accuracy and efficiency of recommendations. To overcome these challenges, we propose an 

innovative method for detecting similar user profiles by combining the power of a bipartite 

graph with the structural similarity measure SimRank. This approach leverages the detailed 

structure of user-interest relationships to provide a more accurate assessment of similarities, 

thereby enhancing the performance of recommendation systems. 

Our method is based on constructing a bipartite graph, where users and their interests are 

represented as two distinct sets of nodes. The edges between these sets illustrate interactions 

between users and interests, providing a structured view of their preferences. By applying 

SimRank, a structural similarity measure, we assess the similarity between users based not only 

on the similarity of their interests but also on their connections within the graph. This approach 

captures complex and subtle relationships by considering both direct interactions and indirect 

relationships through shared interests. 

By integrating this approach into user profile analysis, we aim to improve the accuracy of 

similarity predictions by combining the rich structural information of the bipartite graph with 



the robust capabilities of SimRank. This framework offers a promising alternative to existing 

methods, blending the simplicity and effectiveness of SimRank with the flexibility of a bipartite 

model to identify similar user profiles in complex recommendation systems. 

3.1  Bipartite Graphs 

Bipartite graphs are structures where nodes are divided into two distinct sets, and edges only 

connect nodes from different sets. They are particularly useful for modeling relationships 

between two types of entities, such as users and their interests. In user profile detection, a 

bipartite graph allows for a clear and structured representation of interactions between users 

and interests. This approach facilitates the capture of complex relationships and subtle 

similarities between profiles, using structural similarity measures such as SimRank. By 

leveraging the data structure, the bipartite graph enhances the accuracy of recommendations by 

effectively identifying similar profiles in complex recommendation systems. 

 

Figure 1: Bipartite Graph: Users and Interests 

3.2  The SimRank Structural Similarity Measure 

SimRank is a structural similarity method that evaluates the similarity between two nodes based 

on the similarity of their neighbors [18]. The SimRank formula is defined as follows: 

 

Where Neighbors (u)  and Neighbors(v) are the sets of neighbors of nodes ( u ) and ( v ), 

respectively, and ( C ) is a decay factor that controls the importance of the similarity of 

neighbors. 

When applied to a bipartite graph, SimRank is particularly effective for detecting similar user 

profiles by leveraging the structure of interactions between users and interests. In a bipartite 

graph, users and their interests are represented as two distinct sets of nodes, with edges 

connecting only nodes from different sets. By using SimRank, we can measure the similarity 

between users by analyzing not only the common interests they share but also by considering 

the similarity of their indirect interactions through these interests. This approach captures subtle 

and complex relationships between users, thereby improving the accuracy of recommendations. 

By integrating SimRank with a bipartite graph, we harness SimRank’s ability to assess 



similarities in depth while benefiting from the clear and structured representation provided by 

the bipartite model. 

3.3  Experimentation 

 

For our experimentation, we utilized the MovieLens Dataset, which is well-known and widely 

used in the research of movie recommendation systems. This dataset contains detailed 

information about users' movie preferences, including the ratings they have given to various 

films. The dataset is available in various sizes, ranging from 100,000 ratings to 27 million 

ratings, making it adaptable to the specific needs of different experiments. 

For our study, we focused on a sample of 1,013 diverse movie titles viewed by 70 users. 

Initially, we represented these users and the movies they watched in the form of a weighted 

bipartite user-movie graph, as illustrated in the figure below. 

 

 

Next, we calculated the SimRank similarity within this graph to identify users with similar 

profiles. To evaluate the effectiveness of our approach, we also measured the similarity using 

the cosine method, allowing for a direct comparison between the results obtained with SimRank 

and those obtained with cosine similarity. Below, we present an excerpt of the Python code 

used as well as a sample of the results obtained. 



 

Figure 2:Extrait du code 

 

Figure 3:Extrait des résultats 



In this excerpt, it is interesting to note that the cosine similarity measure between User 2 and 

User 9, as well as between User 2 and User 20, yields a score of 0, indicating that no movies 

were watched in common. In contrast, the SimRank structural similarity measure assigns non-

zero scores for these same pairs due to the phenomenon of similarity propagation. To illustrate 

this concept, consider three users: Ibtissam, Leila, and Malika. Ibtissam likes the movies 

Jumanji and City of Lost Children, Leila likes Jumanji and Twelve Monkeys, and Malika likes 

Twelve Monkeys and Seven. If we calculate the cosine similarity measure between these users, 

we obtain a value of 0 between Ibtissam and Malika because there is no common movie between 

them. However, with the SimRank similarity measure, we obtain a non-zero value because 

Ibtissam is similar to Leila (common movie: Jumanji), and Leila is similar to Malika (common 

movie: Twelve Monkeys). Thus, it is likely that Ibtissam is similar to Malika due to this chain 

of similarities. 

3.3.1 Distribution of Similarity Scores: A Comparative Analysis 

a. Le boxplot  

 

 

The results show that the median similarity scores for the Cosine method are around 0.1, while 

those for SimRank are higher, nearing 0.25, indicating overall higher scores for SimRank. In 

terms of dispersion, the Cosine method exhibits wide variability in scores, with extreme values 

(outliers) reaching up to 0.6-0.7, suggesting a significant diversity in the calculated similarities. 

In contrast, SimRank demonstrates much lower dispersion, with scores largely concentrated 

around the median, indicating greater homogeneity. Outliers, although present in both methods, 

are much more frequent with Cosine, reflecting greater variability, while SimRank shows 

better-controlled variability with fewer outliers. 



b. The Distribution of Similarity Scores Between Users 

 

The Cosine and SimRank methods exhibit distinct score distributions. Cosine shows a high 

density near zero with a long right tail, indicating a wide variability in scores with some high 

values. In contrast, SimRank has a distribution more concentrated around 0.1-0.15, with a sharp 

drop-off outside this range. 

Cosine has a low and scattered density peak, suggesting that most scores are very low, while 

SimRank has a more pronounced density peak, indicating that most scores cluster within a 

narrow range. In terms of dispersion, Cosine covers a wide range of scores, whereas SimRank 

is more concentrated, with few high scores. 

In summary, Cosine is useful for capturing a broad range of similarities, while SimRank is 

better suited for more uniform and consistent similarity results. These differences influence the 

choice of method depending on the objectives of the study on user similarity. 

 

c. Summary 

 

The comparative analysis of the Cosine and SimRank methods reveals notable differences in 

the distribution of similarity scores between users. The Cosine method results in greater 

variability, with scores showing a wide diversity, including a significant number of pairs with 

very high similarities. In contrast, SimRank generates more uniform and generally higher 

scores, but with fewer extreme values, providing more homogeneous and consistent results. 

This distinction suggests that the choice of method depends on the study's objectives. Cosine is 

suitable for detecting marked but rare similarities, while SimRank is better suited for obtaining 

more consistent and nuanced similarities between users. SimRank is particularly effective for 

identifying significant similarities by considering indirect relationships, even in the absence of 

direct common features. Its ability to propagate and transpose similarities allows it to establish 

deeper and more implicit connections between users. 

Regarding the correlation between the two methods, it is moderate. Cosine measures similarity 

based on the angle between users' feature vectors, which can result in highly variable scores. 

SimRank, on the other hand, evaluates similarity based on the structure of interactions between 



users and their indirect relationships, producing more uniform scores. This distinct approach 

explains the moderate correlation observed between the two methods. 

3.4 Results and Discussion 

In the rapidly evolving field of user profile prediction, our study highlights the superior 

effectiveness of integrating bipartite graphs with the SimRank structural similarity measure. 

This innovative approach combines the robustness of bipartite graphs with the analytical depth 

of SimRank, offering a powerful solution for identifying similar user profiles in complex 

recommendation systems. 

Bipartite graphs, by distinctly representing users and their interests, provide a clear structure of 

interactions. This separation facilitates the analysis of complex relationships and subtle 

similarities between users, leveraging the fine structure of the data. However, constructing and 

analyzing bipartite graphs can become computationally expensive in terms of memory and 

processing time, especially with large-scale datasets. Addressing the scalability and efficiency 

of algorithms for complex bipartite graphs is crucial to manage these computational challenges. 

Additionally, bipartite graphs can be very sparse if interactions between users and interests are 

limited, which may impact the quality of recommendations. The sparsity of data can influence 

the results, as it may lead to less accurate similarity measurements and recommendations. 

Exploring methods to mitigate the effects of data sparsity, such as incorporating additional data 

sources or using advanced imputation techniques, could enhance the performance of the 

recommendation system. 

Applying SimRank to these graphs allows for an understanding beyond simple direct matches 

by also capturing indirect relationships between users through their shared interests. This 

method reveals deep similarities that might not be visible with more superficial methods. 

Our experimental results, based on the MovieLens dataset, illustrate the significant advantage 

of this combined approach. While traditional methods such as cosine similarity yield varied 

results with wide dispersion, SimRank offers a more homogeneous and consistent evaluation 

of similarities. By considering not only direct interactions but also indirect connections, 

SimRank enables more accurate predictions of similar users, even in the absence of direct 

common features. 

In conclusion, for applications requiring a nuanced understanding of user relationships, the 

approach based on bipartite graphs combined with SimRank proves to be an optimal solution. 

It provides enhanced precision in recommendations and the ability to identify similar profiles 

in a more nuanced and contextual manner. For any application or research aiming to improve 

recommendation personalization and explore the complex dynamics of user interactions, 

integrating bipartite graphs with SimRank represents a strategic and promising choice. 

4. Conclusion 

 
This paper has demonstrated the effectiveness of combining bipartite graphs with SimRank for 

predicting similar user profiles. By using a bipartite graph to model interactions between users 

and interests, and applying SimRank, we achieved more accurate and consistent results 

compared to traditional methods such as cosine similarity. Experiments on the MovieLens 



dataset showed that SimRank captures both direct and indirect relationships, thereby enhancing 

the quality of recommendations.  

Looking ahead, future research could explore the integration of additional data, such as 

temporal or contextual interactions, and improve the scalability of the approach. The use of 

deep learning techniques and graph neural networks could also further enrich this method, 

paving the way for even more sophisticated and adaptive recommendation systems. 
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